
Language Acquisition
and Learnability

Edited by

STEFANO BERTOLO



PUB L I S HED BY THE PRE S S S YND I CATE OF THE UN I VER S I TY OF CAMBR IDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBR IDGE UN I VER S I TY PRE S S

The Edinburgh Building, Cambridge CB2 2RU, UK www.cup.cam.ac.uk

40 West 20th Street, New York, NY 10011-4211, USA www.cup.org

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Ruiz de AlarcoÂ n 13, 28014 Madrid, Spain

# Cambridge University Press 2001

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2001

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times System 3B2

A catalogue record for this book is available from the British Library

ISBN 0 521 64149 7 hardback

ISBN 0 521 64620 0 paperback



Contents

List of contributors vi
Preface vii

1 A brief overview of learnability 1
st e fano bertolo

2 Learnability and the acquisition of syntax 15
mart i n atk i n s on

3 Language change and learnability 81
i an rob ert s

4 Information theory, complexity and linguistic descriptions 126
rob i n clark

5 The Structural Triggers Learner 172
will i am g. saka s and jan et d. f odor

References 234
Index 244



1 A brief overview of learnability

Stefano Bertolo

Applications of formal learning theory to the problem of human lan-
guage learning can be described as an exercise in which three parties ±
linguists, psychologists and learnability researchers ± cooperatively con-
struct a theory of human language learning and, in so doing, constrain
their space of hypotheses by ruling out all the theories that violate one
or more of the constraints that each party brings to bear on the pro-
blem.

The interaction among these three parties is similar to the interaction
that would take place if a rich patron were to ask an architect and a
structural engineer to work together to design a museum: the architect
would start by designing very bold and innovative plans for the
museum; the engineer would remind him or her, calculator in hand,
that some of those designs would be physically impossible to build and
the patron would visit every so often to make sure that the plans the
engineer and the architect have agreed upon would result in a
museum that could be built within budget and according to a speci-
®ed construction schedule. In our case, linguists would correspond to
the architect: based on their study of human languages or on more
speculative reasons, they specify what they take the possible range of
variation among human languages to be. Psychologists would corre-
spond to the patron: they collect experimental data to show that it
is not just that humans learn the language(s) of the linguistic com-
munity in which they are brought up, but that they do so according
to a typical time schedule and relying on linguistic data of a certain,
restricted, kind. Finally, learnability researchers correspond to the
engineer: some theories of language variation they would be able to
rule out directly, by showing that no conceivable mechanism could
single out a correct hypothesis from such a large and dense range of
choice; some other theories they would pronounce tenable, but only
under certain assumptions on the resources available for learning,
assumptions that need to be empirically validated by work in de-
velopmental psycholinguistics.
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The goal of this introductory chapter is to provide linguists subscrib-
ing to Chomsky's Principles and Parameters Hypothesis (PPH) with a
general understanding of the learnability concepts that need to be
digested in order to study with pro®t research work at the intersection
of linguistics, psychology and learnability and so, in particular, to pro-
vide the background that is required to understand the remaining
essays in this collection.

1.1 The ®ve components of a learning problem

Just like a structural engineer could not even begin to perform an ana-
lysis until a plan of the building has been provided together with the
properties of the materials to be used in building it, a learnability
researcher cannot even begin to work alongside linguists and psycholo-
gists until certain general properties of the learning problem to be
solved are known:1

(i) What is being learned, exactly?
(ii) What kind of hypotheses is the learner capable of entertaining?
(iii) How are the data from the target language presented to the

learner?
(iv) What are the restrictions that govern how the learner updates her

conjectures in response to the data?
(v) Under what conditions, exactly, do we say that a learner has been

successful in the language learning task?

We will brie¯y look at each of them in turn.

1.1.1 The end state of language learning

Since we are dealing with human language learning, the end state of
this process is, by de®nition, a human language. In this section we will
see, however, two things: that this fact itself has a number of interest-
ing consequences and that there is disagreement of a rather interesting
kind on what counts as knowledge of a human language.

First of all, since humans understand and produce utterances pro-
ductively ± i.e. they are able to understand and produce sentences they
were never exposed to ± having learned a human language cannot be
equated with having memorized the list of all the sentences that one
has ever encountered, but it must amount instead to having inter-
nalized a system of rules (a grammar). Under this view, the ®nal state
of the learning process encodes grammatical knowledge that can be
used to classify every possible sentence as grammatical or ungrammati-
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cal in the target language. This observation might give the impression
that learnability may only address the problem of learning the surface
syntax of a language. This is in fact not the case. One could easily
annotate an utterance with all the relevant syntactic and semantic
information. As long as this annotation results in a ®nite object that
can be the input/output of a computation (see Wexler and Culicover
(1980) for an example of how such an annotation can be carried out),
the learning problem of ®nding a grammar for the given data remains
essentially the same. It is for this reason that often in formal work
learning problems are cast as problems of learning sets of natural num-
bers, the assumption being that appropriate coding could turn any
learning problem into such a problem.

It is important to note that there is a fecund research tradition dat-
ing back to Horning (1969) that takes a diÿerent view of what the end
state of the learning process is. Researchers in the ®eld of stochastic
grammars would claim that a grammar that explains the data and can
be used productively is only part of what humans learn when they
learn a natural language. In addition human learners also learn a
probability distribution describing the applicability of the rules in the
grammar. To exemplify, a learner would not only learn that two rules
A and B are part of her grammar but also that, say, A is twice as likely
to be used than B is. It is easy to see that the probability of every sur-
face sentence in a language can thus be obtained by ®rst determining
how many possible structural interpretations the sentence can have and
then adding all the values obtained by multiplying together the prob-
abilities of each of the rules recruited in each interpretation. In this
view, therefore, learners do not simply try to identify the grammar of
their linguistic community but, rather, they try to approximate the
ambient probability distribution on possible linguistic events.

All the contributions in this book proceed under the assumptions
corresponding to the ®rst view, but the reader must be aware of the
fact that alternative views exist that are possibly better placed to
explain certain facts about human language learning.

1.1.2 Available hypotheses

One of the idealizations on which much work on learnability relies is
that learners must entertain hypotheses about the language they are
trying to learn at every step of the way, so that, in eÿect, their
learning history can be viewed as a data driven trajectory in a space of
hypotheses, with the last state hopefully being (one of) the correct
hypothesis(es).
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For a learner to be successful, this space must contain at least a cor-
rect conjecture for each of the possible targets (if, while trying to learn
Hungarian, you were not allowed to hypothesize a grammar equivalent
to the grammar for Hungarian, you would naturally fail), but can
otherwise be limited in many other ways. For example, it has been con-
jectured that, because humans converge on productive hypotheses about
their target languages, it is perhaps a feature of their learning psychol-
ogy that they cannot hypothesize any grammar that allows only ®nitely
many sentences. The PPH has a very strong impact on this component
of the learning problem. Its central idea is that human languages diÿer
from each other only in ®nitely many respects (the parameters) and, in
these respects, only in ®nitely many ways (the values of the para-
meters). But if this is so, all the hypothesis space needs to include are
all the possible combinations of parameter values.

1.1.3 Learning environments

Generally speaking, given a possible sentence s, there are three kinds of
clues the learner can receive about it from the environment: he or she
can either be told, correctly or incorrectly, that s is part of her target
language; or he or she can be told, correctly or incorrectly, that s is
not part of her target language; or, ®nally he or she may not be told
anything at all about s. In other words the environment, even when
accurate, may provide less than complete information about the
language to be learned. Martin Atkinson will show in his chapter that
children learn language using evidence that comes from a rather
constrained subset of the target language.

Finally, a common assumption in learnability is that learners are not
aware of the rule ± if any ± according to which the environment is
presenting the data. Why knowing such a rule would help for learning
in the form of indirect negative evidence will be explained by the
example on page 24 in the next chapter.

1.1.4 Learners

A ®nite sequence of sentences from the target language can be seen as
an evidential state a learner could be in. Accordingly, learners can be
broadly characterized by how they behave as a function of their present
conjecture and evidential state.

For example, some learners base their next move in hypothesis space
on the whole content of their evidential state (they have perfect memory
of past data) while others only remember parts of it. Some learners
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change their conjecture only when it is incompatible with their eviden-
tial state, others are not so constrained. Some try to modify their con-
jectures as little as possible in order to ®t their evidential state, others
take ``wild guesses''. . . For at least one of the criteria of success we are
going to examine, identi®cation in the limit, there exists an impressive
body of work detailing how the class of learnable languages changes
when one or more of these restrictions are imposed on learners. The
interested reader can consult Jain et al. (1999). Here we just mention
the fact that, as we will see below when discussing identi®cation by enu-
meration, while it is often easy to point out which parts of a learning
procedure are at odds with one's best guess about the resources avail-
able to human language learners, it is often quite di�cult to give a gen-
eral characterization of the learning procedures one is comfortable with
as far as developmental psycholinguistics is concerned.

1.1.5 Criteria of success

When can we say that a language learning strategy is successful? We will
consider here three alternative criteria of success that are all compatible
with the implicit premise of all the essays in this collection, the premise,
that is, that what is learned is a grammar with no attached information
about the probability distribution of the sentences that can be generated
by it. As we introduce them we will show that it is very easy to prove
that any class of languages that can be generated by a class of grammars
consistent with the PPH is learnable under each of the three criteria.

The point of this exercise, which will be carried out using each time the
same learning function, identi®cation by enumeration, is to show that all
PPH-consistent classes of languages are trivially learnable under all of
the best understood criteria of success unless some rather substantial
restrictions are imposed on what kind of learners humans are. The whole
history of the last ®fteen years of interaction between parametric
linguistics and learnability (the essays in this volume included) can then
be understood as an attempt to ¯esh out, using whatever evidence is
available from empirical work in linguistics or psychology, what would
follow from the assumption that human learners do not learn by
enumeration but by some other, possibly independently motivated,
mechanism. As mentioned above, no general consensus of what those
mechanisms ought to be has emerged in the last ®fteen years. As a result,
rather than establishing general results, most recent studies have con®ned
themselves to the analysis of individual learning algorithms, that as a
consequence appear to the (ever shrinking) interested public as distant
and isolated points in a vast and otherwise uncharted design space.
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With all this in mind, let us start with our ®rst criterion of success,
identi®cation in the limit (Gold, 1967).

1.1.5.1 Identi®cation in the limit
Gold de®nes a text for a language L as an in®nite sequence of
sentences such that every sentence of L appears at least once in it and
no sentence not in L ever appears in it. Let's consider now a procedure
that takes as input ®nite initial segments of a text for a language and
returns a conjecture (a grammar) about the language it is observing.
Such a procedure is said to identify a text for L if and only if, after
presentation of ®nitely many initial segments of the text it stabilizes on
a single conjecture and that conjecture generates exactly L. The pro-
cedure is said to identify an entire language L if it is able to identify
every possible text for it and, ®nally, it is said to identify a class of
languages L if it identi®es every L in it.

Given these de®nitions, in order to ®nd out whether a class of
languages L is learnable under the criterion of identi®cation in the limit
we either need to show the existence of a learning procedure that
would identify every text for every language in L, or show that no such
learning procedure can exist.

We will immediately show that if a class of languages L has been
generated by a set of grammars consistent with the PPH, then such a
learning procedure does indeed exist. The procedure in question is
called identi®cation by enumeration (IBE) and was ®rst described in
Gold's (1967) seminal paper. We will describe it in detail because the
very same learning procedure will be later employed to prove that
PPH-consistent classes of languages are also learnable under the other
two criteria of success we are going to discuss.

This is how IBE works for a ®nite class of languages such as those that
result from any theory consistent with the PPH: the learner starts by
writing down an enumeration G1;G2 . . .Gn of all her possible conjectures.
The enumeration must have the property that, if k > j, then either
L�Gk� � L�Gj� (the language generated by grammar/hypothesis Gk is the
same language as that generated by grammar/hypothesis Gj) or there is
at least a sentence in L�Gk� that is not in L�Gj�. She then initializes her
hypothesis H to G1 and the set of data observed D to the empty set. After
presentation of each sentence si the learner ®rst determines whether si is
part of L�H�, the language resulting from her current hypothesis H. If
so, she adds si to D and waits for a new sentence. Otherwise she adds si
to D and changes her current conjecture H to the ®rst Gi in the enumera-
tion such that D is a subset of L�Gi�.
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Now, let's see why IBE works for every ®nite class of languages.
Suppose the target is L�Gt�, with 1 � t � n and � is a text for the target.
All we need to show is that: (a) IBE will never abandon the conjecture
Gt ± or any conjecture equivalent to it ± if it ever happens to entertain
it, and (b) there is a ®nite initial segment of � in response to which
IBE will hypothesize Gt or something equivalent. (a) follows immedi-
ately from the de®nition of IBE. As for (b) we can prove it by estab-
lishing that: (c) IBE will never hypothesize a Gk with k > t; (d) it will
abandon every incorrect conjecture Gj after ®nitely many strings from
�, and (e) it will only entertain ®nitely many incorrect conjectures prior
to hypothesizing Gt or one of its equivalents. Now, (e) directly follows
from the fact that the enumeration G1 . . .Gn is ®nite and (c) from the
de®nition of IBE. As for (d), we can reason by contradiction: suppose
that, in response to the ®rst m sentences s1 . . . sm of �, the learner
conjectured a Gj such that j < t and L�Gj� 6� L�Gt� and never changed
her conjecture thereafter. By de®nition of IBE, all of s1 . . . sm must be
members of L�Gj�. Also, from the de®nition of the enumeration
G1 . . .Gn and the assumption that j < t it follows that there is a
sentence st in L�Gt� that is not in L�Gj�. Now, since by assumption � is
a text for L�Gt�, st must appear somewhere in �. And since st cannot
be one of the s1 . . . sm sentences that caused the learner to hypothesize
Gj , it must appear after the learner has hypothesized Gj. So, when the
learner encounters st she is forced to abandon her conjecture, by the
de®nition of IBE and the assumption that st is not a member of L�Gj�.
But this contradicts the initial hypothesis that the learner could
stick to the hypothesis Gj forever and so the proof by contradiction is
completed.

So we now know that IBE is all that is needed to learn (identify in
the limit) any parametric class of languages. With this established, we
must hasten to add that identi®cation in the limit is far too idealized a
criterion of success to be used to model human language learning.

First of all it assumes complete and perfectly reliable information
about the target language. In the following chapter, Martin Atkinson
will show in detail what one would have readily suspected: the environ-
ment in which children learn their target language is noisy and fairly
restrictive in the kind of information it makes available.

Second, it places no bounds of any kind on the amount of data lear-
ners are allowed to use to converge on their target: all that matters is
that they do so in the limit. What we really would like is a criterion
that would require the target to be reached after exposure to a number
of sentences of the same order of magnitude as the number of sen-
tences children are normally exposed to.
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Finally, identi®cation in the limit requires identi®cation to be exact.
But, as the whole chapter by Ian Roberts will explain, it is natural to
argue that languages change over time precisely because there are situa-
tions in which learners get very close to the language of the previous
generation, without, however, quite identifying it.

1.1.5.2 Wexler and Culicover's criterion
We'll take the cue from this last observation to introduce a second
criterion of success on which a fair amount of research in linguistics
and learnability depends. We will call it the Wexler and Culicover
criterion, as it was most extensively used in Wexler and Culicover's
(1980) seminal study on the learnability of transformational grammars.
In more recent times it has been used as the criterion of choice in
Gibson and Wexler's (1994) study and in all the research papers that
extended their original idea, including the chapter by Sakas and Fodor
in the present book.

While in identi®cation in the limit it was possible for a sentence to
appear exactly once in a text for a language, here we will require that
at every time step in the learning process, every sentence in the target
language have a nonzero probability of being presented to the learner.
At the same time, instead of requiring exact identi®cation of the target
language we will just require that, for every 0 < � < 1, for every
language L in the class to be learned and every presentation sequence
satisfying the condition above, there must be a ®nite number n such
that, after presentation of n strings, the learner is guaranteed to output
a conjecture that has probability less than � to be incorrect.

Now, it is very easy to show that IBE can also learn every ®nite
class of languages (and so every class of languages generated by a PPH
theory) under the Wexler and Culicover criterion. The proof goes like
this: since every text satisfying the Wexler and Culicover criterion is
also a text in Gold's sense, it follows that after ®nitely many strings
IBE can identify exactly, that is with error � � 0, every text in the sense
of Wexler and Culicover. But if it can do so for � � 0, it can do so for
every 0 < � < 1.

1.1.5.3 PAC learning
Still, even in the Wexler and Culicover criterion, there is no require-
ment that the number of sentences that are used to attain convergence
with less-than-� error be a small number for every language in the class
to be learned. This concern is, on the contrary, at the heart of the last
criterion we will consider here, Probably Approximately Correct (PAC)
learning, a criterion ®rst proposed by Valiant (1984).
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According to the PAC criterion, a learner is successful if and only if
she has a very high probability of producing a conjecture that is very
close to the target language when using only reasonably few sentences
from the target language.

The general idea underlying PAC learning is that data are presented
to the learner according to a probability distribution unknown to her
and diÿerent for each target language. In other words, every language
has, associated with it, a function that, for each sentence in it,
determines how likely the given sentence is to be presented to the
learner at any one time.2

PAC captures the idea that learners are successful if and only if they
rapidly produce conjectures that would misclassify only a set of
sentences from the target language that has a negligible chance of
appearing in the learner's environment. How rapidly they are required
to produce such a conjecture is a function of how negligible the chance
of error is required to be: the smaller the chance of error required, the
larger the size of the sample that can be used. Larger samples,
naturally, take longer to be collected.

Moreover, unlike the Wexler and Culicover criterion, PAC does not
require that a less-than-�-error conjecture be always arrived at, but
only that the probability of it not being arrived at be smaller than a
certain con®dence parameter � (0 � � < 1=2).

However, as mentioned before, PAC is rather strict on the size of the
sample that can be consumed to produce a conjecture that has less
than � probability of being in error by more than �: it requires that, for
every choice of � and �, the size of the sample consumed be a poly-
nomial function of 1=� and1=�. In other words, the size of the sample
should not grow very fast as 1=� and 1=� grow.

Once again, IBE can be used to show that every ®nite class of lan-
guages is PAC learnable. This follows directly from a theorem proved
by Blumer et al. (1987) which states that a class of languages is PAC
learnable if an Occam learning algorithm can be found for it.

Blumer de®nes an Occam learning algorithm for a class of languages
L as an algorithm that, in response to data from any L in L always
outputs a conjecture that has two properties, it is consistent with the
sample received and has a complexity not exceeding a certain value
that is a function of the least complex hypothesis available for the
language to be learned and the size of the sample itself. The interested
reader can ®nd the precise statement of this second requirement in
Blumer's original article. For the purpose of the present discussion, it
is su�cient to note that the requirement in question is designed to
disqualify hypotheses that, even if consistent with the data, consist
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simply of an enumeration of the sample itself. It will soon be clear, how-
ever, that the details of this requirement are not important for our proof.

So, we want to show that IBE is an Occam learning algorithm for
every ®nite class of languages (when the space of hypotheses is equally
®nite). That its conjectures are always consistent with the sample
presented follows immediately from the de®nition of IBE. As for the
second requirement, it is su�cient to observe that since the learner can
entertain only ®nitely many hypotheses, there exists an upper bound on
the complexity of the possible conjectures. The reader may consult Robin
Clark's chapter in this book for a tutorial on how the complexity of
hypotheses may be de®ned. Here we just note that this upper bound is a
constant and that this is su�cient to meet the second part of Blumer's
requirement for Occam learning algorithms. The reader can refer to
Blumer's original paper to be convinced that this is indeed the case. This
completes the proof that every ®nite class of languages, and so any class
that is consistent with the PPH, is PAC learnable.

1.2 Moving away from identi®cation by enumeration

Our insistence on using IBE in the proof that PPH-informed classes of
languages are learnable under each of the success criteria we examined
is due to the importance of driving home the following point: proving
the learnability of PPH-informed classes of languages is generally
speaking a trivial enterprise, whichever criterion of success one decides
to adopt. The task becomes challenging only once one decides to reject
as part of a model of human language learning the two very features
that make IBE as successful as it is: complete memory of all past data
and access to an initial enumeration that allows for hypotheses to be
searched in the correct order.

Even in the absence of much substantive work in developmental
psycholinguistics showing how much memory for past data children
can be expected to have in the process of language learning, it is quite
reasonable to reject the hypothesis that they have recall of their entire
learning sample. It is interesting to note that most recent models of
parametric language acquisition such as Dresher and Kaye's cue based
learner, Gibson and Wexler's TLA, Clark's Genetic Algorithm and
Fodor's STL (see Martin Atkinson's and Fodor and Sakas' chapters
for detailed discussion of each of them) make the exact opposite
assumption and attempt to show how learnability may be proved even
using learners that have no explicit memory whatsoever of their learn-
ing sample although some of them cleverly encode some of it in the
conjectures they entertain at any given time.
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But it is when we start exploring what it would mean to abandon
the other important feature of IBE, the prescient enumeration of all
possible hypotheses, that we ®nally get to the heart of what makes the
interaction between parametric linguistics, psychology and learnability
interesting. IBE was repeatedly proved to work under the assumption
that only ®nitely many hypotheses are available to the learner. But the
PPH is a much stronger hypothesis than that: it not only implies that
the class of possible (hypotheses about) human languages is ®nite but,
most importantly, that variation among human languages can be
expected to be systematic and take place along several, largely orthogo-
nal dimensions. What this suggests, in eÿect, is that, although it is
unrealistic to expect that human learners rely on a space of hypotheses
that is nicely linearized as seen in IBE, it is perhaps not unreasonable
to suppose that it is organized according to other principles that may
make it possible to search it reliably and e�ciently. The last ®fteen
years of work on the subject could be fairly reconstructed as a
sustained investigation of what those principles might be. The entire
line of research on the so called Subset Principle initiated by Wexler
and Manzini (1987) and summarized by Martin Atkinson in the next
chapter can be seen as an investigation of the structure of the space of
hypotheses that would result if all parameter values except one were
kept constant.

More recent work has concentrated on the possible patterns of over-
lapping among target languages that result from alternative settings of
the parameters and allow algorithms as diverse as Gibson and Wexler's
TLA and Fodor's STL to search the resulting space of hypotheses
reliably and e�ciently.

Because such patterns, which will form the subject of the discussion
in much of the rest of this book, are often quite intricate, this introduc-
tory chapter will end by introducing a formal de®nition of parameter
spaces that will, in eÿect, serve as a specialized vocabulary designed to
make it possible to describe those patterns precisely and concisely. All
the contributors to this book will then be able to use this vocabulary
as a lingua franca that will facilitate the understanding of several, inter-
related arguments by translating them from their original formulation
into a common standard.

1.3 A formal model of parameter spaces

In this ®nal section we will proceed as follows: we will ®rst give a
de®nition of parameter spaces that is general enough to cover any con-
ceivable theory of language variation consistent with the PPH. We will
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then introduce the notation that is necessary to isolate regions of inter-
est in any parameter space of interest.

De®nition 1.1 A parameter space P is a triple hpar;L;�i, where � is a
®nite alphabet of symbols and par is a ®nite set of parameters fp1 . . . png.
The parameters themselves can be seen as sets. In particular, given
a parameter pi, its members, which we enumerate as v1i . . . v

jpi j
i , are

just the ``possible values'' of pi. Given the cartesian product
P � p1 � p2 � � � � � pn, a parameter vector P is a member of P, namely a
possible way of choosing one value for every parameter. Let �� be the set
of all ®nite strings over the alphabet � and 2�

�
its power set (the set of

all subsets of ��). The function L : P 7!2�
�
assigns a possibly empty sub-

set of �� to each vector P 2 P, that is it associates every possible para-
meter setting (vector) with a language (set of strings).

As it turns out, in order to analyze a parametric learning algorithm
it is important to have a way of referring to portions of a parameter
space that share a certain value assignment to certain selected para-
meters. This can be achieved in two steps by ®rst de®ning the notion of
a partial parameter assignment and then showing how a parameter
space can be sliced according to a particular parameter assignment.

De®nition 1.2 Let P be a parameter space. A partial assignment in P is
any subset B of

[

pi2par
fpig � pi

such that for every pi in par there is at most one hpi; vmi i in B. Given two
partial assignments A and B in P, B is said to be A-consistent iÿ A [ B
is also a partial assignment in P.

For example, suppose we have a parameter space with two binary
valued parameters p1 and p2. If p1 � f0; 1g, then the cartesian product
fp1g � p1 is the set of all ordered pairs such that the ®rst element is the
parameter p1 and the second element is one of its values, 0 or 1. The
cartesian product fp1g � p1 therefore turns out to be fhp1; 0i; hp1; 1ig.
Each of the elements of the cartesian product can be seen as a particu-
lar assignment of value to p1. If p2 is also equal to the set f0; 1g, then
we have that

[

pi2par
fpig � pi � fhp1; 0i; hp1; 1i; hp2; 0i; hp2; 1ig:
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By de®nition 1.2 the subsets fhp1; 0i; hp2; 0ig, fhp1; 0ig and fhp2; 0ig
are all partial assignments in P. In particular, fhp2; 0ig is fhp1; 0ig-
consistent.

Finally, the following de®nition formalizes the notion of concentrat-
ing only on a part of a parameter space, a part that is picked up by
choosing a partial assignment. The function �i is a ``projection'' func-
tion: it takes a vector (parameter assignment) and returns the i-th ele-
ment of the vector.

De®nition 1.3 Let P be a parameter space and A a partial assignment in
it. If A � 1, then P�A� � P. If P�A� is a parameter space hparA;L;�i
�with parA � fpA1 . . . pAn g� and B is an A-consistent partial assignment in
P, then the subspace P�A [ B� is the parameter space hparA[B;L;�i such
that, given

H �
[

x2B
�1�x�;

if pj 62 H then pA[Bj � pAj and if pj 2 H then pA[Bj � fvmj g where vmj is the
only v 2 pj such that hpj; vmj i 2 B. Finally, P�A [ B� is the parameter
space hparA[B;L;�i where, for every pi in H, pA[Bi � pAi ÿ pA[Bi and, for
every pi not in H, pA[Bi � pAi .

This de®nition looks more formidable than it really is. All it says is
that, given a parameter space P, and a partial assignment A, it is possi-
ble to de®ne the ``P�A� corner'' of P to consist of all and only those
languages in P that have their parameters set exactly as dictated by A.
So, if A � fhpi; 0i; hpj; 1ig, the ``P�A� corner'' of P contains all and
only those languages that have pi set to value 0 and pj set to value 1.
Similarly, P�A� can be seen as the ``mirror image'' of the ``P�A� corner''
since it is the set of all languages that have all the parameters listed in
A set diÿerently than is dictated by A.

It is worth noting that the larger the partial assignment A, the smal-
ler the ``P�A� corner'' of P one is looking at. This means that, when we
take a partial assignment A and we expand it to a larger partial assign-
ment A [ B, the ``P�A [ B� corner'' of P is smaller than the original
``P�A� corner''.3

This is all the descriptive apparatus that we will need for the discus-
sion that follows. So, for example, using the notation

s 2
[

P2PA

L�P� ÿ
\

P2PA[B

L�P�

we can avoid the cumbersome expression ``s belongs to at least one of
the languages whose parameters have been set as dictated by A but it is
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not the case that it belongs to every language that has its parameters
set as dictated by A and at variance with all the parameter assignments
listed in B''. Hopefully, the reader will soon appreciate the advantages
of the notation.

Note s

1 Sadly, much work on language learning is published in which entire theories
are established and conclusions are drawn with disregard for these very basic
requirements.

2 PAC is really able to represent a more general scenario, where what is
assigned a probability is the event that a given sentence is presented to the
learner as a positive or negative example of the target language.

3 This obviously assumes that B is not empty and that B is not properly
included in A.
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